Journal of Organometallic Chemistry, 197 (1980) 95–104 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

π -OLEFIN-IRIDIUM-KOMPLEXE

V*. ISOPROPYL-GRIGNARD-REAKTIONEN VON BIS(µ-CHLORO-1,5-CYCLOOCTADIENIRIDIUM) IN GEGENWART VON 1,3-BUTADIENEN

JÖRN MÜLLER *, WOLFGANG HÄHNLEIN, HELMUTH MENIG und JOACHIM PICKARDT

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12 (Deutschland)

(Eingegangen den 24. März 1980)

Summary

The nature of iridium π -complexes formed by reactions of $[Ir(COD)Cl]_2$ (COD = 1,5-cyclooctadiene) with i-C₃H₇MgBr in the presence of substituted 1,3-butadienes strongly depends on the substitution types of the dienes and remarkably differs from the products of the corresponding reactions with cyclic dienes. With isoprene, $(\eta^4$ -COD) $(\eta^4$ -2-methyl-1,3-butadiene)-n-propyliridium(I) is obtained. Reaction with piperylene yields $(\eta^4$ -COD) $(\eta^3$ -1,3dimethylallyl) $(\eta^2$ -1,3-pentadiene)iridium(I) which was characterized by X-ray diffraction analysis and which is highly fluxional in solution. From the Grignard reactions with some other 1,3-butadienes no crystalline mononuclear π -complexes could be isolated.

Zusammenfassung

Die Natur der Iridium- π -Komplexe, die durch Reaktionen von $[Ir(COD)Cl]_2$ (COD = 1,5-Cyclooctadien) mit i-C₃H₇MgBr in Gegenwart substituierter 1,3-Butadiene gebildet werden, hängt stark vom Substitutionstyp der Diene ab und unterscheidet sich deutlich von den Produkten der betreffenden Reaktionen mit cyclischen Dienen. Mit Isopren erhält man (η^4 -COD)(η^4 -2-methyl-1,3butadien)-n-propyliridium(I). Die Reaktion mit Piperylen liefert (η^4 -COD)-(η^3 -1,3-dimethylallyl)(η^2 -1,3-pentadien)iridium(I), das durch Röntgenbeugungsanalyse charakterisiert wurde und in Lösung stark fluktuiert. Aus den Grignard-Reaktionen mit einigen anderen 1,3-Butadienen konnten keine kristallinen, einkernigen π -Komplexe isoliert werden.

^{*} IV. Mitteilung: siehe Ref. 7.

Einleitung

In einer vorangegangenen Arbeit hatten wir über Isopropyl-Grignard-Reaktionen von [Ir(COD)Cl]₂ (COD = 1,5-Cyclooctadien) mit cyclischen Dienen berichtet, bei denen Hydridobis(η^4 -cyclodien)iridium(I)-Komplexe (z. B. Ia) entstehen [1]. Diese unterliegen in Lösung bei Raumtemperatur einem schnellen intramolekularen Austausch des Hydridowasserstoffs, wobei als kurzlebige Zwischenstufen (η^4 -Cyclodien)(η^3 -cycloenyl)iridium(I)-Spezies (z. B. Ib) auftreten. Als Beispiel sei die Umsetzung mit 1,3-Cyclohexadien angeführt (Gl. 1).

1/2
$$\left[Ir(COD)CI \right]_{2}$$
 + i - C₃H₇MgBr + 1,3-C₆H₈ $\frac{Et_{2}O}{-"MgBrCI"}$

Im Falle des leichteren Homologen Rhodium werden dagegen ausschliesslich $(\eta^4$ -Cyclodien) $(\eta^3$ -cycloenyl)rhodium(I)-Verbindungen vom Typ Ib gebildet, die in Lösung keinerlei dynamisches Verhalten zeigen, d. h. nicht im Gleichgewicht mit einer zu Ia analogen Form stehen [2]. Die unterschiedlichen Strukturen der Rh(I)- und Ir(I)- π -Komplexe sind dadurch bedingt, dass das Zentralmetall in ersteren eine 16-, in letzteren eine 18-Valenzelektronen-Konfiguration bevorzugt [1-3].

Die 16-Elektronenvalenzschale ist auch in $(\eta^3$ -Allyl) $(\eta^4$ -COD)rhodium(I) realisiert [4]; dasselbe gilt für die entsprechenden Verbindungen mit alkylbzw. phenylsubstituierten η^3 -Allyl-Liganden, die durch Reaktion von 1,3-Butadienen mit [Rh(COD)Cl]₂ in Gegenwart von i-C₃H₇MgBr in regio- und stereoselektiver (syn-Formen) Weise z. B. gemäss Gl. 2 gebildet werden [5].

$$\frac{Et_2O}{-"MgBrCI", -C_3H_6} \quad (COD) \quad Rh \qquad (2)$$

Bei analogen Umsetzungen mit $[Ir(COD)Cl]_2$, die in der vorliegenden Arbeit beschrieben werden, hatten wir zunächst mit der Bildung von $[HIr(\eta^4-1,3-butadien)(\eta^4-COD)]$ -Komplexen gerechnet; wider Erwarten nahmen die Reaktionen jedoch einen anderen Verlauf.

Präparative Ergebnisse

Die Resultate der Umsetzungen von [Ir(COD)Cl]₂ [6] mit Isopropyl-Grignard in Ether in Gegenwart von 1,3-Butadien und alkylsubstituierten 1,3-Butadienen liefern kein so einheitliches Bild wie im Falle des Rhodiums. Mit 1,3-Butadien selbst erhält man ein zersetzliches, nicht kristallisierbares, gelbes Öl, das ein Gemisch mehrerer Komplexe enthält, die sich chromatographisch nicht auftrennen liessen. Bei der vorsichtigen fraktionierten Verdampfung in der Ionenquelle eines Massenspektrometers erscheinen nacheinander die Ionen [(COD)-IrC₄H₇]⁺ (m/e 356), [(COD)IrC₈H₁₃]⁺ (m/e 410), [(COD)IrC₁₂H₁₉]⁺ (m/e 464) und höhere Spezies dieser Reihe, was darauf hinweist, dass bei der π -Komplexbildung zumindest partiell Oligomerisierung von Butadieneinheiten erfolgt ist. Das IR-Spektrum liefert keine Hinweise auf Hydridowasserstoff, was den Schluss zulässt, dass ein Butadienmolekül in den Methylallyl-Liganden (C₄H₇) umgewandelt wurde.

Die Grignard-Reaktion von $[Ir(COD)Cl]_2$ mit trans-1,3-Pentadien führt dagegen zu einer gut kristallisierenden, einheitlichen, gelben Verbindung der Bruttozusammensetzung $C_{18}H_{29}Ir$ (II). Aufgrund der spektrometrischen Daten allein konnte kein eindeutiger Konstitutionsbeweis geführt werden, eine Röntgenbeugungsanalyse lieferte dagegen folgendes Strukturschema:

Wie bei $[Rh(COD)C_5H_9]$ [5] liegt auch in II ein η^3 -1,3-Dimethylallyl-Ligand mit beiden Methylgruppen in syn-Position vor; zusätzlich ist ein 1,3-Pentadien-Molekül über die 1,2-Doppelbindung an das Zentralmetall koordiniert, wodurch das Ir-Atom im Gegensatz zum genannten Rh-Komplex wieder Edelgaskonfiguration erhält. Die freie Doppelbindung gibt sich im IR-Spektrum (KBr) durch eine mittelstarke Absorption bei 1643 cm⁻¹ zu erkennen.

Die NMR-Spektren von II sind stark temperaturabhängig und überdies wegen der niederen Symmetrie des Moleküls derart komplex, dass eine befriedigende Analyse der Ligandenbewegungen vorerst nicht möglich ist. Im 270-MHz-¹H-NMR-Spektrum wird im untersuchten Temperaturbereich zwischen 173 und 320 K ein sich ständig änderndes Signalmuster beobachtet. Im Tieftemperatur-¹³C-NMR-Spektrum (190 K) treten 18 Signale auf, pro C-Atom eines.

Lösungen von II in Hexan verfärben sich bei Raumtemperatur innerhalb von 30 min von hellgelb nach orangebraun; Abkühlen führt wieder zur Aufhellung der Farbe. Kristalle von II färben sich bei Raumtemperatur ebenfalls dunkel, dieser Vorgang ist jedoch nicht reversibel. Die dunkelbraunen Kristalle lösen sich aber wieder vollständig in Hexan; Tiefkühlung führt anschliessend zur Kristallisation von reinem, hellgelbem II. Das geschilderte Verhalten lässt sich möglicherweise auf Metall-Ligand-Dissoziation des nur über eine Doppelbindung koordinierten Pentadiens zurückführen.

Im Massenspektrum von II erscheint das Molekül-Ion $[(C_8H_{12})Ir(C_5H_9)-(C_5H_8)]^*$ nur in sehr geringer Intensität; die Basispeakgruppe wird durch das Fragment-Ion $[(C_8H_{12})Ir(C_5H_9)]^*$ und wasserstoffärmere Spezies gebildet, als

nächstintensive Peakgruppe treten die Ionen $[(C_{s}H_{n})Ir]^{*}$ $(n \leq 9)$ auf.

Die Isopropyl-Grignard-Reaktion von $[Ir(COD)Cl]_2$ mit Isopren nimmt einen weniger übersichtlichen Verlauf. Die chromatographische Aufarbeitung des Reaktionsgemisches liefert zunächst eine gelbe Hexanfraktion, in der laut Massenspektrum zwei einkernige Verbindungen der Zusammensetzung $C_{16}H_{27}Ir$ (III) und $C_{18}H_{29}Ir$ enthalten sind. Letztere stellt ein Isomeres zu II dar, konnte jedoch im Gegensatz zu III nicht in kristalliner Form isoliert und charakterisiert werden. Die mit Toluol eluierbare Fraktion der Chromatographie enthält eine Reihe roter, mehrkerniger Komplexe, u.a. eine Spezies der Zusammensetzung $C_{18}H_{30}Ir_2$ (Feldionisations-MS); die Konstitutionsermittlung scheiterte an der ungenügenden Auftrennung und den geringen Mengen der Einzelkomponenten.

Die spektrometrischen Daten von III belegen folgende Konstitution:

Auch in dieser Verbindung ist das Zentralatom edelgaskonfiguriert. Es besteht enge Verwandtschaft zum bereits beschriebenen (η^4 -COD)(η^4 -2-methylbutadien)methyliridium(I), das durch Reaktion von [Ir(COD)Cl]₂ mit LiCH₃ in Gegenwart von Isopren erhalten worden ist [7]. Die Signale für den COD- und den Isopren-Liganden im ¹H-NMR-Spektrum von III (Fig. 1) sind mit denen der Methylverbindung nach Lage und Aufspaltung nahezu identisch. Die Asymmetrie des Moleküls bedingt das Auftreten von vier verschiedenen Resonanzen für die olefinischen COD-Protonen H^h. Für die Kopplungskonstanten der olefinischen η^4 -Isopren-Protonen wurden folgende Werte gemessen: ${}^{2}J(\mathrm{H}^{c}\mathrm{H}^{d}) =$ $^{2}J(\text{H}^{c}\text{H}^{d'}) = 3.2 \text{ Hz}; \,^{3}J(\text{H}^{a}\text{H}^{c'}) = \,^{3}J(\text{H}^{a}\text{H}^{d'}) = 6.5 \text{ Hz}; \,^{4}J(\text{H}^{a}\text{H}^{c}) \approx \,^{4}J(\text{H}^{a}\text{H}^{d}) \approx$ 1.3 Hz. Unter den Resonanzen des n-Propylliganden ist nur das Triplett der Protonen H^g klar erkennbar $[{}^{3}J(H^{f}H^{g}) = 7.0 \text{ Hz}]$, während die Signale der Methylenprotonen H^e und H^f mit COD-Protonenresonanzen zusammenfallen, wodurch eine Analyse der Aufspaltungsmuster verhindert wird. Im Gegensatz zum Verhalten von II ist das ¹H-NMR-Spektrum von III weitgehend temperaturunabhängig.

Im Elektronenstoss-Massenspektrum (70 eV) von III tritt das Molekül-Ion nur in geringer Intensität auf; die Basispeakgruppe bilden das durch Verlust eines C_3H_7 -Radikals entstehende Ion und wasserstoffärmere Fragmente. Unter Feldionisationsbedingungen erscheint zunächst praktisch ausschliesslich das Molekül-Ion von III; mit steigender Probentemperatur (ca. 30–65°C) und zunehmender Verweildauer der Substanz in der Ionenquelle tritt in wachsender relativer Intensität ein um 42 Masseneinheiten (C₃H₆) leichteres Ion sowie das Ion $C_3H_6^+$ auf. Diese Beobachtungen lassen den Schluss zu, dass im Hochvakuum oberhalb Raumtemperatur der n-Propylligand in III der β -Eliminierung unterliegt.

Die Grignard-Reaktion von [Ir(COD)Cl]₂ mit 2,3-Dimethyl-1,3-butadien lieferte keinen isolierbaren Einkernkomplex. Es wurden lediglich rote mehrkernige Verbindungen erhalten, u.a. eine Spezies des Zusammensetzung

Fig. 1. H-NMR-Spektrum von III. Bruker WH 270; Benzol-d6-

 $C_{25}H_{42}Ir_2$ (Felddesorptions-MS; CH-Analyse), die bislang nicht identifiziert werden konnten.

Röntgenbeugungsanalyse von II

Die Verbindung kristallisiert orthorhombisch, Raumgruppe $P2_12_12_1$, mit vier Formeleinheiten C₁₈H₂₉Ir in der Elementarzelle. Die Gitterkonstanten betragen *a* 2438.6 pm, *b* 912.6 pm und *c* 721.4 pm, $V = 1605.5 \times 10^6$ pm³, d_{ber} . 1.87 g/cm³, d_{exp} . 1.72 g/cm³.

Wegen der thermischen Labilität der Verbindung wurde die Messung bei ca. 175 K durchgeführt. Mit einem Einkristalldiffraktometer Syntex P2₁ wurden unter Verwendung von Mo- K_{α} -Strahlung (Graphitmonochromator) die Intensitäten von 2084 unabhängigen Reflexen mit $2\theta \leq 55^{\circ}$ gemessen, von denen 1926 Reflexe mit Intensitäten $I > 2\alpha(I)$ für die Strukturbestimmung verwendet wurden. Die Intensitäten wurden wie üblich korrigiert, für die Absorptionskorrektur wurde eine empirische Methode (Syntex XTL-Programm TAPER, μ 88.1 cm⁻¹) verwendet. Die Strukturermittlung erfolgte nach der Schweratommethode.

Das Iridiumatom wurde mit anisotropen Temperaturfaktoren, die Kohlenstoffatome wurden isotrop verfeinert. Die Lagen der Wasserstoffatome konnten nicht ermittelt werden. Die Verfeinerung konvergierte bei einem *R*-Wert von 0.061. Die Strukturparameter sind in Tabelle 1 zusammengestellt, Fig. 2. zeigt eine ORTEP-Darstellung der Verbindung.

	VON 11 a
ABELLE 1	TRUKTURPARAMETER
E	ŝ

								and the state of t	
Atom	x	x	٢٤	B ₁₁ (B)	B_{22}	B ₃₃	B 12	B ₁₃	B23
lr	0.14767(3)	0.21311(10)	0.30967(12)	0,87(2)	0.57(3)	1,18(3)	0.02(3)	-0.08(3)	-0.05(4)
C(1)	0,1056(9)	0.4105(27)	0.4197(36)	1.54(39)					
C(2)	0.1402(9)	0.4528(23)	0.2519(30)	1.90(45)					
C(3)	0.1214(9)	0.4875(26)	0.0821(34)	1,55(38)	Atome	Abstand (pm)	Atome		Winkel
C(4)	0.0787(9)	0.3713(29)	-0.0130(33)	1.76(42)					
C(5)	0.0918(7)	0.2213(30)	0.0750(30)	1.33(33)	lrC(1)	222(2)	C(9)-C(10)C(11)	122.3
C(6)	0.0633(9)	0.1586(29)	0.2484(30)	2.21(43)	IrC(2)	223(3)	C(10)-C(1	1)C(12)	122.2
C(7)	0,0257(7)	0.2433(21)	0,3483(25)	0.90(36)	IrC(5)	217(2)	c(11)C(1	2)C(13)	125,6
C(8)	0.0438(8)	0.4030(26)	0.3957(32)	1.41(38)	IrC(6)	216(2)	C(14)-C(1	6)—C(16)	110,4
C(9)	0,1844(8)	0.1975(28)	0.5839(30)	1.29(36)	lrC(9)	218(2)	C(15)-C(1	6)—C(17)	117.2
C(10)	0.1320(8)	0.1371(27)	0.5886(32)	1.54(33)	lr-C(10)	216(2)	C(16)-C(1	7)C(18)	122.9
C(11)	0,1227(8)	-0.0216(25)	0.6049(32)	1,18(35)	lr-C(15)	236(2)			
C(12)	0.0756(9)	-0.0769(27)	0.6672(36)	2.02(43)	lr-C(16)	216(2)			
C(13)	0,0646(12)	-0.2431(33)	0.7125(44)	3,63(62)	lr-C(17)	221(2)			
C(14)	0.2614(10)	0.3519(32)	0.0661(40)	2,80(49)	C(9)-C(10)	Í 39(3)			
C(15)	0.2403(8)	0.2264(30)	0.2179(31)	2,08(39)	C(10)-C(11)	147(3)			
C(16)	0.2063(9)	0.1135(27)	0.1238(32)	1,59(41)	C(11)-C(12)	133(3)			
C(17)	0.1851(9)	0.0009(27)	0.2335(31)	1.62(42)	C(15)-C(16)	149(3)			
C(18)	0.1518(9)	-0.1246(26)	0.1551(29)	1,90(40)	C(16)-C(17)	140(3)			
		والمراجع		A state and an end of the state	a na manda a mana a falanta da mandara 1944 a da mandada an	a a state of a state of the sta			

^a Standardabweichungen in Klammern beziehen sieh auf die letzten Ziffern, B_{ij} in 10⁴ pm²; der anisotrope Temperaturfaktor ist gegeben durch $T = \exp(-1/4 - (B_{11}h^2a^{42} + ..., 2B_{12}hka^4b^4 + ...)$.

į

١

1

Fig. 2. ORTEP-Ansicht des Moleküls II.

Die Röntgenstrukturanalyse zeigt, dass der Cyclooctadienring eine Wannenform besitzt, wie sie auch bei der Untersuchung anderer COD-Komplexe, z. B. (Benzol)(1,5-cyclooctadien)ruthenium(0) [8] bzw. (1,5-Cyclooctadien)(cyclooctadienyl)rhodium(I) [9] gefunden wurde. Der COD-Ring C(1)-C(8) ist über seine beiden Doppelbindungen C(1)-C(2) und C(5)-C(6) an das Iridiumatom gebunden.

Das 1,3-Pentadienmolekül C(9)-C(13) ist über eine Doppelbindung, C(9)-C(10), an das Metall gebunden, wobei die Länge dieser Bindung (139 pm) erwartungsgemäss gegenüber der im freien Olefin (136 pm) etwas vergrössert ist.

Der Allyl-Ligand C(14)-C(18) ist nahezu planar, der grösste Abstand von der Ausgleichsebene durch die fünf Kohlenstoffatome des Liganden beträgt 2.5 pm. Das Iridium-Atom ist über die Atome C(17) (Bindungsabstand Ir-C(17)221 pm), C(16) (Bindungsabstand 216 pm) und C(15) (Bindungsabstand 236 pm) an den Liganden gebunden.

Da die Bindung C(16)–C(17) mit einer Länge von 140 pm offenbar eine Kohlenstoff–Kohlenstoff-Doppelbindung darstellt, während die Bindung zwischen den Kohlenstoffatomen C(17) und C(18) mit einer Bindungslänge von 151 pm als Einfachbindung anzusehen ist, kann die Bindung der Allyl-Gruppe an das Iridium-Atom wohl am besten durch eine σ -Bindung (Ir–C(15)) und eine π -Bindung (Ir–C(16)–C(17)) beschrieben werden. Damit fungiert der Allyl-Ligand formal als ein Drei-Elektronen-Donor, und das Iridium-Atom erreicht Edelgaskonfiguration.

Diskussion

Unsere bisherigen Untersuchungen der Isopropyl-Grignard-Reaktionen von [Ir(COD)Cl]₂ mit Dienen belegen in eindrucksvoller Weise, in wie starkem

Masse die Produkte von der Art des eingesetzten Diens abhängen. Die beobachteten Unterschiede lassen sich weitgehend auf sterische Effekte zurückführen. In erster Linie gilt dies für das abweichende Verhalten von 1,3-Cyclodienen und 1,3-Butadienen.

In der gemäss Gl. 1 gebildeten, mit dem stabilen Hydridokomplex Ia im Austauschgleichgewicht stehenden η^3 -Cycloenyl-Spezies Ib ist zwangsläufig ein anti-Anordnung des Ringrestes im Cycloenyl-Liganden vorgegeben. Die endo-Wasserstoffe an den C-Atomen 4 bzw. 6 des Cyclohexenyl-Systems befinden sich in für die Rückübertragung auf das Ir-Atom günstigen Positionen (Rückbildung von Ia). Anders liegen die Verhältnisse bei der Grignard-Reaktion mit Piperylen (Gl. 3). Die durch β -Eliminierung aus der σ -Alkylzwischenstufe gebil dete Hydridobis(η^4 -dien)iridium-Spezies IVa steht zwar auch hier im Austauschgleichgewicht mit einer (η^3 -Allyl)(η^4 -COD)iridium-Form; die Methylgruppen am Allylliganden besetzen zunächst die syn- und die anti-Position (IVb). Durch die bekannte [10,11] antarafaciale anti-syn-Isomerisierung kanr jedoch die sterisch günstigere syn-syn-Form IVc gebildet werden. Die syn-Methylgruppen stehen nun für die Rückübertragung eines H-Atoms auf das Zentralmetall nicht mehr zur Verfügung; das 16-Elektronensystem IVc stabili siert sich durch Aufnahme eines weiteren η^2 -1.3-Pentadien-Liganden unter Bildung von II.

Die Grignard-Reaktion mit Isopren dürfte teilweise einen ähnlichen Verl nehmen; die nicht isolierte und lediglich massenspektrometrisch nachgewie Verbindung $C_{18}H_{29}$ Ir sollte eine zu II analoge Struktur aufweisen. Überrass ist jedoch, dass die β -Eliminierung der Isopropylzwischenstufe unvollständ und stattdessen Isomerisierung zum sterisch günstigeren n-Propyl-Ligander erfolgt (Bildung von III gemäss Gl. 4). Dieses Verhalten kann nur auf die sterische Hinderung durch die Methylgruppe in 2-Position des Isoprens zu geführt werden. Das Ausbleiben der Bildung von Einkernkomplexen bei d Grignard-Reaktion mit 2,3-Dimethyl-1,3-butadien wäre auf der Basis dieser Annahme ebenfalls verständlich.

Experimentelles

Sämtliche Arbeiten müssen unter Sauerstoffausschluss durchgeführt werden. (1) (1.2.5.6-n-1.5-Cyclooctadien)(1,2-n-1,3-pentadien)(2-4-n-pentenyl)iridium(1) (II). Zu einer Suspension von 1.01 g (1.5 mmol) [Ir(COD)Cl]₂ in 25 ml Ether gibt man 0.8 ml trans-1,3-Pentadien und tropft bei 195 K eine Grignard-Lösung, bereitet aus 120 mg (4.9 mmol) Mg und 0.49 ml i-C₃H₇Br in 30 ml Ether, im Verlauf von 10 min zu. Man lässt allmählich auf Raumtemperatur erwärmen und bestrahlt 5 h unter Kühlen des Kolbens mit Leitungswasser mit dem UV-Licht eines Hg-Hochdruckbrenners (Typ Q 81, Fa. Heraeus, Hanau), der ca. 3 cm von der Kolbenwand entfernt ist. Danach werden Solvens und überschüssiges Olefin abgezogen. Den Rückstand eluiert man dreimal mit je 50 ml Hexan und filtriert über Al₂O₃ (Merck; 5% H₂O). Beim Einengen und Abkühlen kristallisiert III in hellgelben Nadeln aus. Zweimaliges Umkristallisieren aus Hexan unter Tiefkühlung liefert 650 mg (1.49 mmol; 50%) analysenreines Produkt, Zers. ab. 324 K. (Gef.: C, 49.40; H, 6.50; Mol.-Masse massenspektrometr., bezogen auf ¹⁹³Ir, 438. C₁₈H₂₉Ir ber.: C, 49.40; H, 6.68%. Mol.-Masse, 437.65).

(2) $(1,2,5,6-\eta-1,5$ -Cyclooctadien)(1-4- η -methyl-1,3-butadien)-n-propyliridium(I) (III). Ansatz wie bei 1. unter Verwendung von 0.8 ml Isopren, Umsetzung und Aufarbeitung analog. Die erhaltene Hexanlösung wird nach Einengen an Al₂O₃ (5% H₂O) unter Verwendung einer 50 cm langen und 1.5 cm weiten Säule bei 250 K chromatographiert. Mit Hexan wandert eine gelbe Zone, von der nur die ersten beiden Drittel aufgefangen werden. Nach Einengen und Tiefkühlung erhält man 140 mg (0.34 mmol; 11%) III in Gestalt blassgelber Nadeln, Zers. ab 316 K. (Gef.: C, 47.15; H, 6.83; Mol.-Masse massenspektrometr., bezogen auf ¹⁹³Ir, 412. C₁₆H₂₇Ir ber.: C, 46.69; H, 6.61%; Mol.-Masse, 411.61).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Untersuchungen.

Literatur

¹ J. Müller, H. Menig und P.V. Rinze, J. Organometal. Chem., 181 (1979) 387.

² J. Müller, H.-O. Stühler und W. Goll, Chem. Ber., 108 (1975) 1074.

.

- 3 J. Müller, H. Menig, G. Huttner und A. Frank, J. Organometal. Chen., 185 (1980) 251.
- 4 A. Kasahara und K. Tanaka, Bull. Chem. Soc. Japan, 39 (1966) 634.
- 5 H.-O. Stühler und J. Müller, Chem. Ber., 112 (1979) 1359.
- 6 G. Winkhaus und H. Singer, Chem. Ber., 99 (1966) 3610.
- 7 J. Müller und H. Menig, J. Organometal. Chem., 191 (1980) 303.
- 8 H. Schmid und M.L. Ziegler, Chem. Ber., 109 (1976) 132.
- 9 J. Pickardt und H.-O. Stühler, Chem. Ber., 113 (1980) 1623.
- 10 K. Vrieze und H.C. Volger, J. Organometal. Chem., 9 (1967) 537.
- 11 J.W. Faller und M.E. Thomson, J. Amer. Chem. Soc., 91 (1969) 6871.